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SUMMARY 
This paper discusses the different sources of non-physical entropy production which occur in the numerical 
resolution of the Euler equations for compressible inviscid flow and proposes several ways of correcting 
these effects. In particular a hybrid corrected centred, augmented by an accurate upwind scheme near 
singular boundaries is proposed which satisfies the mathematical entropy condition, and which solves the 
flow accurately within regions near non-smooth boundaries of the computational domain. A coupled new 
dynamic auto-adaptive mesh algorithm which produces highly accurate solutions is also introduced. This 
algorithm is non-hierarchical, i.e. it does not depend on a fixed background mesh, which allows structural 
and geometrical changes and generates extremely precise discretizations for steady and unsteady flow. 
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1. INTRODUCTION 

Numerical simulation of complex steady and unsteady compressible flows require schemes that 
are able to capture the different types of discontinuities within the field, and accurately represent 
the flow behaviour near boundaries. Non-physical solutions of hyperbolic systems, such as the 
non-linear system of the Euler equations for compressible flow, which can also be seen as the 
convective kernel of the complete Navier-Stokes equations, can be avoided by ensuring an 
entorpy preserving property of the designed schemes.' Another anomaly pertaining to the relative 
dissipative nature of the numerical schemes is the spurious non-physical entropy production 
which can arise in the vicinity of solid wall boundaries presenting non-continuous discretization 
contours, and geometrical singularities. This is due to the incapacity of such schemes in solving 
exactly the cell interface problems within such regions. This provokes a non-physical boundary 
layer-type phenomenon which can lead to sources of non-physical vorticity downstream and 
forbid accurate capturing of near wall contact discontinuities. The entropy preserving property is 
not satisfied immediately by many popular numerical schemes which need to be corrected in 
order to do However, the near-wall boundary problem implies entropy losses which are not 
taken into account by such corrections, and a localized hybridzation of schemes in such zones is 
investigated in order to obtain precise solutions at a reduced cost compared to full non-linear 
Riemann solvers. The numerical dissipative nature of the numerical schemes also plays an 
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important role in the control of such questions, whether it is explicit as in artificial viscosity 
methods or internal as for approximate Riemann solvers, for instance. 

The ability of the underlying numerical scheme to correctly and precisely represent the different 
physical processes within the flow field is also highly linked to the grid structure of the 
discretization. This can be considerably enhanced by using adapted grids. Indeed, precise 
simulation of unsteady aerodynamic configurations can be performed with a high level of 
accuracy and efficiency by use of auto-adaptive dynamic mesh procedures. The framework of 
unstructured meshes is particularly relevant for implementing such algorithms. Adaptation of the 
current mesh to the flow field is obtained by local mesh enrichment and coarsening by removing 
superfluous nodes. Combining the relative grid dependency of the numerical scheme and 
auto-adaptive grids using refinement-derefinement algorithms on unstructured meshes provides 
a robust tool for capturing sharply defined physical phenomena, as for instance, shock forma- 
tions, moving free surfaces, reaction zones or flame propagation in combustion. Also, these 
methods provide a remeshing strategy for unsteady flows, allowing a specific physical phenomena 
to be 'followed' with accuracy. For example, multiple shock reflections in air engine inlets or 
turbo-machinary cascades, provide difficult cases of unsteady flow, with not only strong shock 
interactions, but also secondary transient shocks and contact discontinuities. 

In this paper, the possibility of correcting simplified numerical schemes with entropy correc- 
tions and using a hybrid scheme near discontinuous surfaces are discussed and tested for 
unsteady transient shock problems. Comparison with approximate Riemann solvers are given. 
Generic external and internal unsteady aerodynamical problems are solved by use of auto- 
adaptive dynamical mesh adaptation. The algorithms developed here use a non-hierarchical data 
structure which allows greater freedom for optimising the quality of the generated meshes, with 
a gain in memory and CPU requirements. 

2. NUMERICAL METHOD 

2.1. Governing equations 

which can be written in two dimensions as 
The Euler equations for compressible flow form a hyperbolic system of conservation laws 

aw ~ F ~ ( w )  ~ F ~ ( w )  -+- + ~ = 0 for (x, y ,  t )  €0 x R' 
at ax aY 

W(X, y ,  0) = WO(X, Y )  for (x, Y )  E 0 (1) 
plus appropriate boundary conditions for (x, y, t )  E x [w' 

where 

p designates the density, (u, u )  the speed, p the pressure, and E total energy. The system is closed 
by a state equation relating the pressure to the total energy, which for a perfect gas gives 
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The Euler equations only have weak global solutions, which implies that strong gradients and 
discontinuities, such as shock waves, expansion fans and contact discontinuities are present 
within the admissible solutions. In order to filter out amongst the multiple solutions the physical 
solutions an entropy preserving condition is enforced following Lax.' 
Definition 

An entropy function is a convex function W(x. t ) :  Rd+2 + R, such that there exists an entropy 
flux F(w)  = [F l (W) ,  . . . ,Fd(w)] ,  with 

dW(W) dFk(W) dFh(W) 
, k = l ,  . . . ,  d -- 

dW dW dW 

The weak solution W(x, t)  of (1) satisfies the entropy condition if for all entropy functions, W(x, t ) ,  
corresponding to the entropy flux F ( W ) ,  then the following inequality is satisfied: 

aW(w) + a9h(w) 

at k = l  axk 
in the sense of measures. 

In particular for the Euler equations of gas dynamics, W(W) = - ph(s) ,  F ( W )  = - puh(s), 
where s = ln(p/pY) is the physical entropy. For d 2 2, the existence of an entropy couple, (W, F) 
can be related to the fact that the system is symetrizable via a change of variables, W = W(V). 
Formulations of the Euler equations in terms of entropy variables enforces naturally the second 
principle of  thermodynamic^.^ The above entropy condition can again be expressed in terms of 
these entropy variables. 

2.2. Numerical approximation 

The numerical methods employed here are based upon a spatial approximation using the 
hybrid Galerkin finite volume method on the 'dual' control volumes of the underlying P1 
Galerkin finite element approximation. These cells constitute the dual topology of the P1 
triangular n-simplex space, such that the finite volume formulation over the dual cells is 
equivalent to a P1 Galerkin finite element approx ima t i~n .~ .~  They are constructed by taking the 
barycentres of the contributing triangles to a discretization node i, as in the Figure 1. The 
Galerkin finite volume method is based upon the variational form of the equations (1). 

Let V = { u  E Co(i2),  uI linear VTE S }  (Pl-approximation) 

Find W E  V4 such that Vcp E V, 
(2)  

F(W) - nij do - F(W)-n,drr 
j s h ( i )  i,, a'&, n r 

Figure 1. Construction of a dual cell 
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aVij denotes the interface boundary of the dual cell around the node i with respect to a neighbour- 
ing node j. 

The numerical scheme is defined by the numerical flux function @F,, in the direction of the 
normal nij to the cell interface between states i and j: 

Any such numerical flux may be written formally as 

@F,,(wi, wj) = !f[F(Wi) + F(Wj)l + @fiij(wi, wj) (3) 
where @$,,(Wi, Wj) represents the dissipative part of scheme. This numerical dissipation is either 
artificial viscosity terms or an implicit dissipation. 

Here, two such numerical fluxes are considered, a standard centred difference flux with 
additional artifical dissipation for stability and shock-capturing of the Jameson type, and the 
Osher flux which is an approximate Riemann solver. 

For the centred scheme both a second-order and fourth-order artificial dissipation are neces- 
sary. These terms are calculated in a way similar to finite difference stencils as illustrated in the 
Figure 2: 

@fiij(Wi, W,) = &;.if'D(2)(Wi, Wj) - &j;.$)D(*)(Wii, Wi, Wj, Wj*) 

The shock capturing second-order term contains a TVD pressure switch, and the fourth-order 
term for high-frequency damping is scaled to mutually exclude regions of high second-order 
disspation. For details on these dissipation terms we refer to References 7-9. 

The Osher flux can be written formally as 

@(Wi, Wj) = &[Fij(Wi) + Fij(Wj) - IAij(W)IdW] s"w: 
where the integral depends on the choice of integration path r between the states Wi and Wj, 
r = rl u r2 u r3, corresponding to two compression waves for the truely non-linear fields and 
a contact discontinuity for the linearly degenerate field. Second-order accuracy is obtained by 
a third-order MUSCL extrapolation which renders an overall second-order accuracy for irregu- 
lar meshes with a minmod limiter near discontinuities. 

The system (2) leads to a set of coupled ordinary differential equations of the form 

W l f '  - w; aire (Vi) + C-'R(Wi) = 0 with C = diag 
dt (4) 

Figure 2. Construction of points i* and j *  
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Time integration is performed by a four stage Runge-Kutta integration procedure, assuring good 
time accuracy and stability properties for both unsteady and steady-state situations. 

where Uk are taken to be standard coefficients.' 

2.3. Discrete entropy condition 

The above centred scheme has the advantages to be straightforward to implement and very 
efficient in CPU time requirements. However its main drawback is the presence of serious entropy 
oscillations in strong gradient regions due to the non-preservation of the entropy condition, and 
also non-physical entropy production at solid wall boundaries, particularly near sharp changes of 
the geometry (see examples below). The first point can be rectified by adding an entropy 
correction similar to that proposed by References 2 and 11. This correction is discussed briefly 
below. 

Following the notation of Reference 12 ,  a general numerical flux in two dimensions (3) can be 
written as an explicit plus a dissipation part plus an implicit part. For the explicit part in two 
space dimensions: 

A W P x P  = - (01 61 @ I  + 0282@2)i 
with the following notation, @ k = l , d  = (O1, . . . ,md) ,  d = 2 and p k ,  6 k  are average and difference 
operators. 

The discrete entropy inequality becomes 

(a16101 + O26Z02)i < 0 

where (al, 0,) is the numerical entropy flux consistent with (Sl. F,). In terms of the entropy 
variables V this flux can be written as 0 = p S  + pVT@ - p(YTF). The explicit numerical flux 
is thus modified in the following way: 

( 0  if 9 = 0  

and 
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This term acts in fact as an anti-diffusion flux, which can be added to the original second-order 
difference dissipative flux. Its role is in fact to adjust the dissipation in such a way that the entropy 
overshoots and undershoots near discontinuities become physical. 

The entropy production near discontinuous boundaries is not resolved in this way as the 
mathematical entropy condition is not violated in the flow downstream of the discontinuous wall 
zone (entropy losses). The break in the boundary provokes a compression wave, a numerical and 
a physical mini-expansion fan. The above entropy correction cannot compensate for the spurious 
entropy layer coming from the numerics and the centred scheme cannot cope with the interface 
problems localized in these zones, whereas a Riemann solver automatically solves the problem 
correctly. In the example illustrated in the Figure 3, an unsteady supersonic flow at Mach 3 over 
a forward step of height 0.2 in a channel of height 1, is considered. This test case has been used as 
a benchmark for testing different dissipation and entropy control of different numerical 
methods3 The centred scheme violates the entropy condition near shocks as shown by the 
oscillations within the shocks, and presents a strong non-physical entropy production at the 
singular corner, this creates ‘boundary layer’ phenomena downstream along the wall boundary, 
as clearly visible within the iso-Mach or iso-entropy lines. If no particular correction is applied, 
this scheme does not converge at all to a physical possible solution (Figure (3, top left)). For this 
reason a hybrid Centred/Riemann scheme is proposed. Within regions of discontinuous bound- 
aries and for a certain number of cells downstream of this region the numerical flux is evaluated 
by the approximate Riemann solver. The adaptation of the standard centred scheme increases of 
course the CPU cost, but it still results a reduction of more than 50 per cent compared to 
calculation performed completely with a non-linear approximate Riemann scheme (see Table I). 
The implemenetation of the hybrid scheme depends on a search algorithm for discontinuous 
boundaries, and a systematic flagging of neighbouring cells. The interface cell between the two 
numerical fluxes remains consistent with the approximation, over the dual control volumes, as 
each subsection of the boundary between to such adjacent cells is treated with one single flux 
term. 

One, unacceptable, way of getting around this problem is to locally refine intensively the 
singular point of the corner, and coarsen the mesh downstream, thus minimizing the effect of 
entropy production. However, a locally refined/derefined adaptive mesh algorithm will allow us 
to follow the evolution of the solution over the corner. Indeed, by dynamically adapting the mesh 
using the procedures detailed in the next section, the number of nodes necessary for a precise 
solution with the proposed hybrid scheme can even be considerably reduced (more than a third in 
this case), and the accuracy of the solution is even improved, as illustrated by the Figure 4. 

Table I. Normalized CPU time and MFLOPS rate 

CPU CPU 
Solver seconds normalized Megaflops 

Centred scheme 125 1 135 
Corrected centred scheme 354 2.8 160 
Corrected hybrid scheme 437 3.5 170 
Osher 1303 10.4 180 
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3. MESH ADAPTATION ALGORITHMS 

3.1. Motivation 

One of the most important advantages of unstructured grids is the possibility to refine/derefine 
locally the mesh during the computation. Successive mesh concentration by local refinement in 
critical zones may be performed, without knowing these zones a priori at the initial mesh creation 
time, as well as mesh derefinement which can be performed in regions where the nodes seem 
superfluous. Hence the overall the amount of discretization nodes is reduced to an optimal 
relation between precision and calculation cost (CPU time and memory constraint). Strong 
physical gradients and other characteristic phenomena can be tracked within the flow field by 
higher grid point concentrations. This is especially important for unsteady flows. In low super- 
sonic flows, as for instance inlet geometries, the interesting regions are the shock waves and the 
expansion fans, which have to be precisely located and well quantified. Localized refinements are 
obtained in such zones, which are determined precisely by the combination of several physical 
criteria, such as shock sensors, density discontinuities and strong gradients. 

The mesh adaptation procedure is automatically coupled wihin the solution algorithm. The 
refinement/derefinement process is made hierarchically free by use of internal flagging, and 
successively coarsening prior to enrichment, (see next subsection). A regularisation phase is 
included to optimize the geometrical characteristics, such as neighbour number minimization, 
segment alignment, maximized circumscribed circle. Dynamical stretching and diagonal swap- 
ping are an integral part of the adaptation procedure. 

The mesh adaptation criteria follow a shock sensor across adjacent triangles. In this way the 
moving shocks along the profiles are sensitively captured. Indeed, transient shocks as well as 
primary shocks are successfully filtered, as can be seen within the different levels of refinement 
obtained, (see Section 4). 

3.2. Non-hierarchical mesh adaptation 

The algorithm of the dynamical refinement/derefinement procedure, is based on a certain 
number of basic algorithmic principles taking into consideration the particularities of local mesh 
refinement for finite element type generated meshes. Most algorithms of this sort rely on some 
kind of hierarchical data tree structure.' 3-15 This facilitates scanning backwards and forwards 
via the successive affiliations. This leads to a multi-level programming environment, which can 
become quite heavy and inhibits structural changes for mesh quality optimization. 

Here, a novel anti-data structure has been adopted, where the successive subdivisions are 
performed independently of the former operations. Firstly, a list of nodes to be invalidated is 
dressed, followed by their destruction, even if they belong to the initial mesh, i.e. there is no 
background mesh as with hierarchical methods. Secondly, the remaining configuration is locally 
refined and optimized to obtain a regular, conformal, admissible mesh. During these stages, 
a mesh looks like a distribution of nodes. The whole procedure is directly integrated into the flow 
solver, and by use of dynamical memory management, the updated mesh replaces the former one, 
with small extra memory allocation. It is not necessary, in this way, to give a maximal overall 
allocation of memory. 

3.3. Algorithm 

Three kinds of mesh adaptation can be distinguished (a) adaptation by moving the points into 
specific regions where a higher concentration of mesh points is desirable, (b) redistribution of 
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points within such zones by remeshing, (c) localized refinement by enrichment or derefinement by 
elimination. In this work, the last possibility is employed. In order to find the specific zones where 
a higher/lower concentration of mesh points will enhance the accuracy and accelerate conver- 
gence, some criteria need to be formulated. There are also three classes of such criteria: 

(a) 'a priori' error estimations, based on the discrete system of governing equations. 
(b) 'a posteriori' error estimations, based upon the Residual, R(W"). 
(c) criteria based upon the variations of physical variables. 

The complexity of the governing non-linear system of equations renders the first two methods 
highly complex. However, important advances have been made recently in this d~main . '~* '~ , ' '  
We have adopted the third method in this work, which allows considerable freedom for fixing 
different tolerances and is well adapted to specific physical phenomena present within the flow 
fields. For steady-state situations we take combinations of VMach, VDensity and VEntropy(s), for 
unsteady and transient situations combinations of AMach, ADensity, As are taken, where A rep- 
resents differences, and also convected gradients are also useful for wake flows. In fact in the 
unsteady situation, these criteria are very closely related to the a posteriori ones. 

Local refinement is obtained by dividing edges at their mid-point, division of elements into 3 is 
prohibited to avoid obtuse anle situations. Some novel admissibility criteria are enforced to 
produce regular, conformal and admissible triangulations. These are purely geometrical criteria 
based on the number of neighbours. In particular, in 2D we have that 

(i) each candidate for division by 2 must verify 

6* 2 B(6, + 8 2  + 6,) 
where 0 2  3 /? 3 0.3, 6* represents the initial edge length, hi are the lengths of the three 
edges of the non-refined triangle otherwise it should be divided by 4. 

(ii) It is necessary to ensure that configurations where there are an insufficient or an excessive 
number of neighbours are avoided. This can be detected by 

These two constraints result in a general tendency of 6 neighbours throughout the mesh (in 
2D). 

(iii) For unsteady flows: never create edges of length smaller than certain tolerance. 

3.4. Optimization 

Once an admissible refinement step has been performed it is necessary to apply optimization 
rules to obtain smooth, regular, optimally distributed and non-obtuse elements. In the context of 
the non-hierarchical algorithm presented here, both the refinement and the optimization steps are 
performed after the derefinment one, which is discussed below. Two kinds of optimization 
methods are developed, geometric ones or ones based upon the actual physics of the flow field. 

(1) Geometric optimization is either by 

(2) or by structural changes (see Figure 5) 
(a) barycentric and weighted barycentric smoothing 

(b) diagonal swapping via neighbour number rules. 

Diagonal swapping is enforced if one of the following condition is fulfilled: 
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o elimination of degenerate elements 

U U U 

Figure 5. Elimination procedures 

mesh and solution 
without alignment 

mesh with edge 
alignment 

mesh without stretching Refinement with 
in the direction of gradients gradient squeezing 

Figure 6. Improvement by aligning segments in the discontinuity direction and local squeezing 

N3 + N4 = N1 + Nz 

max(N3, N4) < max(Nl, N d  

(3) Optimization based upon the physics corresponds to 
(a) edge alignment with characteristic directions, 
(b) stretching the node distribution in characteristic directions, 
(c) by further structural changes, (diagonal swapping), alignment with discontinuities is also 

As an example, Figures 6 and 7 show the improvement that can be obtained with these 
procedures. 

A detailed description of all the optimisation procedures can be found in Reference 7 and 18. 

introduced. 
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Treat elements with 3 
marked nodes, first step 

2 nodes marked treated Treat elements with only one 
in a second step marked nodes, third step 

Figure 7. Derefinement algorithm stages with fixed points 

3.5. Mesh derejinement algorithm 

Non-hierarchical Algorithm 
Derefine mesh A?,,, 

Search phase of Fixed points that cannot be derefined. 
singular points, symmetry lines, nodes marked for refinement, etc. 
Mark nodes that are of key importance (boundaries, and internal) 
Enter the derefinement phase 

report criteria to nodes by flagging 
admissibility 

Local refinement phase 

Optimization New mesh A?," 
Calculate solution on this mesh W"+ 
Report criteria depending on W"+ 
Create Mtn+ I by going back to derefinement step. 

The kernel of this phase is the marking of the fixed points. The algorithm is best illustrated by 
pictures, the fixed points are marked in solid black. 

4. NUMERICAL RESULTS 

One of the problems considered here is an unsteady supersonic flow at Mach 3 over a forward 
step, to illustrate the accuracy and efficiency of the hybrid scheme (see Section 2.3). The 
refinement/derefinement procedure allows a very precise following of the physical properties of 
the flow field as illustrated with the Figure 4. One-hundred and sixty different meshes where 
generated overall, for an increase in computational time of approximately 5 per cent. 

Another test case which illustrates the power of this algorithm even for steady-state calcu- 
lations, is that of a supersonic air intake, (Figure 8). Four successive passes of refine- 
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ment/derefinement are used to obtain an extremely precise representation of the flow within the 
intake for a final mesh of 19 477 nodes. The multiple reflections, and the strong normal shock at 
the rear of the cowl due to the fixed compressor-entrance pressure are captured with a high degree 
of precision. Even the small embedded sonic shock can be seen. An equivalent calculation on 
a structured multi-block mesh needed five times more discretisation points to obtain an equiva- 
lent solution. 

A transient pitching airfoil case is also illustrated in Figure 9. The aerofoil pitches harmonically 
about the quarter chord at the semi-chord reduced frequency of k = 0.0814 and an amplitude of 
251". Upstream conditions correspond to M ,  = 0.755, with initial angle of attack of 0.016". The 
figure illustrates the Is0 Cp lines for various angular positions within the complete pitching cycle. 
The automatic refinement/derefinement is clearly illustrated, with a high precision of the transi- 
ent shock resolutions. Although the algorithm is totally non-hierarchical with no background 
mesh, the meshes corresponding to the same point in the cycle are almost equivalent despite the 
multiple changes that occur during the cycle. 

Lastly, a highly unsteady multiple shock reflection problem has been imagined by considering 
a supersonic flow over the EPFL logo in a duct, Figure 10. The efficiency of the dynamical 
auto-adaptive mesh algorithm is clearly shown. The physical phenomena illustrated are well 
captured, from strong shocks, to weak expansions, and weaker secondary shock reflections. The 
non-hierarchical structure indeed allows more freedom for filtering within the criteria used to 
detect zones to be refined/derefined. For all the unsteady cases, the difference between two 
succeeding meshes is small, the structural changes within the optimization phase do not change 
the positions of the points, there is thus a certain inertia. This could have created problems for the 
more violently changing flow presented here, t 

Figure 

hleih (4613 nodes) and sol ion Cp at af t )  = 2.049" 

t the results are conclusive to ;he contrary. 

~ ~~ 

Mesh (4549 nodes) and solution Cp at a(t)  = -0.761' 

/ '.. 
Mesh (4773 nodes) and solution CP at aft) = -0.759" 

Mesh (4512 nodes) and soh 

9. Pitching naca Airfoil 

tion Cp at a( t )  = -2.494' 

with non-hierarchical d 
k = O  

,/u \ 
L 

Mesh (4452 nodes) and solution Cp at a( t )  = 2.045' 

Mesh (4132 nodes) and soliition Cp at a(r) = 2.049" 

ynamic adaptation M ,  = 0.755, a, = 0.016", El = 2.510, 
.0814 
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Partial view over Mesh 42967 nodes 

Partial view over Mesh 43519 nodes 

- r  ... 

Iso-Mach 

Iso-C" 

Iso-Mach 

Figure 10. Unsteady flow over EPFL Iogo-M, = 3 

5. CONCLUSIONS 

Combining entropy corrections for simple solvers gives clearly an interesting alternative to 
complete Riemann solvers for numerical simulation of many complex unsteady flows. Coupling 
such a solver with dynamical mesh adaptation by enrichment/coarsening on unstructured meshes 
provides a considerable enahncement on the accuracy. The novel non-hierarchical dynamical 
mesh adaptation by refinement/derefinement algorithm provides a robust method for accurate 
transient and unsteady flow computations, and allows greater freedom for optimizing the quality 
and precision of the grids. The extension of this work to 3D is under hand and is a promising way 
of handling complex flow numerics for complex geometries with multiple components. 
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